Table of Contents

➤ Performing a Tool Change
➤ Clear the Tool in Spindle
➤ Tool Touch-off
  ➤ Without touch probe
  ➤ With touch probe
➤ Part Setup
  ➤ Without part probe
➤ Absolute Tool Length Calibration Defined
Performing a Toolchange
Performing a Manual Toolchange

1. Press the MANUAL mode button on the control panel.
2. Press INPUT on control panel.
3. Select TOOL REVIEW softkey.
4. Select TOOL SETUP softkey.
5. Enter the desired tool number and press ENTER.

### TOOL SETUP

<table>
<thead>
<tr>
<th>TOOL NUMBER</th>
<th>LOCATION</th>
<th>MACHINE</th>
<th>PART</th>
<th>SPEED</th>
<th>SPINDLE</th>
<th>TOOL TYPE</th>
<th>DIAMETER</th>
<th>COOLANT</th>
<th>CAL</th>
<th>SURFACE SPEED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manual</td>
<td>0.0000</td>
<td>0.0000</td>
<td>CW</td>
<td>SPINDLE</td>
<td>END MILL</td>
<td>0.5000</td>
<td>CW</td>
<td>7639</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>MANUAL</td>
<td></td>
<td></td>
<td></td>
<td>(STOPPED)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performing a Manual Tool Change

6. Press the Tool Changer AUTO button – START CYCLE should begin to flash

7. Press the flashing START CYCLE button

8. Verify the AUTO/MANUAL state of the current tool – use the Tool Changer Auto button to toggle the AUTO/MANUAL condition of the tool
1. Press the MANUAL mode button on the control panel
2. Select TOOL MANAGEMENT softkey
3. Select CLEAR TOOLIN SPINDLE softkey
4. Press the flashing START CYCLE button
Tool Touch-off
Without Tool Touch Probe
**Note:** the tool setup and touch-off procedures in this manual assume that the machine control has been setup in *Absolute Tool Length* mode. Please refer to the separate section at the end of this document for more details.

### TOOL SETUP

<table>
<thead>
<tr>
<th>MACHINE</th>
<th>PART</th>
<th>SPINDLE</th>
</tr>
</thead>
</table>
| x       | 0.0000 | 0.0000 | 0  
| y       | 0.0000 | 0.0000 | 0  
| z       | 0.0000 | 0.0000 | 0  |

<table>
<thead>
<tr>
<th>TOOL NUMBER</th>
<th>1</th>
<th>LOCATION</th>
<th>Manual</th>
<th>MANUAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOOL TYPE</td>
<td>END MILL</td>
<td>SPEED</td>
<td>CW</td>
<td>CAL</td>
</tr>
<tr>
<td>DIAMETER</td>
<td>0.5000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TOOL CAL LENGTH:** 6.2531

**TOUCH-OFF DEVICE:** 1 | GAUGE

The absolute length of the tool, measured from the spindle gage-line.

**CUTTING TIME:** 21

**DIAMETER WEAR:** 0.0000

Amount of time in minutes that the tool has been in the rotating spindle.

**PRESS MANUAL MODE, POWER, AND START CYCLE TO RESTORE POWER.**
Step 1
Verify the Active Device

1. Press INPUT on control panel
2. Select TOOL REVIEW softkey
3. Select TOOL SETUP softkey
4. Select MORE softkey
5. Select TOOL MEASUREMENT SETTINGS softkey
6. Select the active Touch-off device
Step 2
Calibrate the Tool

1. Jog the tool into contact with the active touch-off device using the hand-wheel

2. Store the tool length by pressing the SET LENGTH softkey (F6)
Tool Touch-off
With Tool Touch Probe
**Note:** the tool setup and touch-off procedures in this manual assume that the machine control has been setup in *Absolute Tool Length* mode. Please refer to the separate section at the end of this document for more details.

The absolute length of the tool, measured from the spindle gage-line.

Amount of time in minutes that the tool has been in the rotating spindle.

**PRESS MANUAL MODE, POWER, AND START CYCLE TO RESTORE POWER.**
Step 1
Verify Probing Cycle Defaults

1. Press INPUT on control panel
2. Select TOOL REVIEW softkey
3. Select TOOL SETUP softkey
4. Select MORE softkey
5. Select TOOL PROBING softkey
6. Select TOOL PROBE SETUP softkey
7. Select TOOL PROBING CYCLE DEFAULTS softkey

<table>
<thead>
<tr>
<th>TOOL PROBING CYCLE DEFAULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Recommended Default Settings</strong></td>
</tr>
<tr>
<td>SPINDLE USAGE</td>
</tr>
<tr>
<td>MANUAL</td>
</tr>
<tr>
<td>FAST FEED</td>
</tr>
<tr>
<td>25.0</td>
</tr>
<tr>
<td>RAPID CLEARANCE</td>
</tr>
<tr>
<td>0.3937</td>
</tr>
</tbody>
</table>

Specify how the spindle will operate during the tool probing cycle.

STORE RESULT AS:
- LENGTH
- TOOL LENGTH
- DIAMETER
- DIAMETER WEAR
Step 2
Probe the Tool

1. Press INPUT on control panel
2. Select TOOL REVIEW softkey
3. Select TOOL SETUP softkey
4. Select MORE softkey
5. Select TOOL PROBING softkey
6. Measure tool for reference length, and enter the value in the TOOL CAL LENGTH field

Enter an estimated tool length before probing the tool. The value is used to calculate the Rapid Z Position.
Step 2 - Continued
Probe the Tool

7. Check the EDIT PARAMETERS box to allow editing of the default probing parameters – only if needed – be sure to check all 3 tabs (Main, Length, Diameter).

8. Select the desired cycle type

9. Select the PROBE CURRENT TOOL NOW softkey

Note: the travel speed of the probe is controlled by the FEED knob only.
Part Setup
Without Part Probe
**Note:** the default configuration for the part setup screen is in the Universal Rotary setting. Regardless of the machine configuration (3-axis, 4-axis, or 5-axis) there will be data fields for a IV and V axis. This is normal, and the fields can be ignored for standard 3-axis machines.

<table>
<thead>
<tr>
<th>MACHINE</th>
<th>PART</th>
<th>SPINDLE</th>
<th>FEED (STOPPED)</th>
<th>TOOL IN SPINDLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Y</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Z</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART ZERO</th>
<th>SHIFT</th>
<th>SAFETY WORK REGION</th>
<th>PART PROGRAMMING</th>
<th>PROGRAM PARAMETERS</th>
<th>PART PROBING</th>
<th>STORE MACHINE POSITION</th>
<th>MORE +</th>
<th>EXIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Enter part zero.
Part Setup
Without Part Probe

1. Press INPUT on control panel
2. Select PART SETUP softkey
3. Jog the desired axis into position using the handwheel
4. Place the cursor in the corresponding data field for the desired axis
5. Select the STORE MACHINE POSITION softkey
6. Verify the data is correct

![PART SETUP]
**Note:** the SHIFT field can be used to incrementally shift the Z-axis. For example: a value of 2.0000” will shift the Z-axis zero in the positive direction by two inches. Both positive and negative values can be input.
Absolute Tool Length Calibration
Contents

» What is Absolute Tool Length

» What is the Spindle Gage-line

» What is a Master Reference Tool

» How is the Gage-line calculated

» Why is it important to use the Gage-line for tool lengths

» How to establish a Probe or Gauge device.
Absolute Tool Length

What is it?
**Absolute Tool Length** - is the actual measured length of a tool sticking out of the spindle, and is typically measured from the spindle gage-line.
Spindle Gage-line
What is it?
The spindle gage-line falls somewhere within the gap between the spindle nose face and the V-flange on the tool holder.

The location is determined by a specified diameter along the ground taper of the tool.
The specified diameter on a CAT40 holder is 1.75” diameter

CAT 50 is 2.75” diameter
Master Reference Tool
What is it?
Master Reference Tool - is a tool of calibrated length that can be mounted in the spindle and used to accurately reference a machine’s spindle gage-line. The length is stenciled on the body.
# Purchase a Master Reference Tool

Renishaw, Inc. • 5277 Trillium Blvd. • Hoffman Estates, IL 60192 • 847-286-9953

[www.renishaw.com](http://www.renishaw.com)

<table>
<thead>
<tr>
<th>Description</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAT40 Calibration Master</td>
<td>M2253-0954</td>
</tr>
<tr>
<td>CAT50 Calibration Master</td>
<td>M2253-0955</td>
</tr>
<tr>
<td>BT30 Calibration Master</td>
<td>M2253-1562</td>
</tr>
<tr>
<td>HSK63 Calibration Master</td>
<td>M2253-1558</td>
</tr>
</tbody>
</table>

"mind over metal"
Setting the Z-Reference
Applying the gage-line
The Z-reference dimension is the measured distance between the spindle gage-line and the machine table surface.

Z Reference = gage-line to table top surface
Measuring the Z-Reference
How is it calculated?
Z-axis Machine Position

Master Reference Tool Length

Dial Gage Height

Z-Reference Dimension
Top of active device = a calculated location

-19.6355 - 1.9685 = -17.6670
Tool Length \[ (17.6670 - 12.6669 = 5.0001") \]

Z-axis Machine Position \((-12.6669)\)

Calculated Device Location \((-17.6670)\)
In 3-axis setups the spindle nose CAN be used, but calculated tool lengths will be “machine specific”, and the tools cannot be shared between other machines.

Also, offline tool pre-setters cannot be used if tool lengths do not reference the spindle gage-line.
Apply this to 5-axis
Measuring Centerlines
Rotary axis centerlines are measured from the spindle gage-line in the Z-axis direction.

Tool lengths **MUST** be measured from the same reference point - or positioning is off location when the part is rotated.
Establish a Setup Device
How do I?
Absolute Tool Length allows the operator to define and use six different devices to establish a tool’s calibrated length.

The device height is simply an actual measured height of any object to be used to touch-off tools (example: 123 block).
Select the active Touch-Off Device.

Verify the correct device is active when calibrating tools.
If one of the devices to be used is a probe, the device type will be set to Probe instead of Gauge.

Height is the distance from the table surface to the probe stylus surface or laser beam – should be established at install.